Generative Moment Matching Networks
نویسندگان
چکیده
We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer preceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Instead, we utilize a technique from statistical hypothesis testing known as maximum mean discrepancy (MMD), which leads to a simple objective that can be interpreted as matching all orders of statistics between a dataset and samples from the model, and can be trained by backpropagation. We further boost the performance of this approach by combining our generative network with an auto-encoder network, using MMD to learn to generate codes that can then be decoded to produce samples. We show that the combination of these techniques yields excellent generative models compared to baseline approaches as measured on MNIST and the Toronto Face Database.
منابع مشابه
Conditional Generative Moment-Matching Networks
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment-matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learn...
متن کاملOnline Algorithms for Sum-Product Networks with Continuous Variables
Sum-product networks (SPNs) have recently emerged as an attractive representation due to their dual interpretation as a special type of deep neural network with clear semantics and a tractable probabilistic graphical model. We explore online algorithms for parameter learning in SPNs with continuous variables. More specifically, we consider SPNs with Gaussian leaf distributions and show how to d...
متن کاملSubmodular Mini-Batch Training in Generative Moment Matching Networks
Generative moment matching network (GMMN), which is based on the maximum mean discrepancy (MMD) measure, is a generative model for unsupervised learning, where the mini-batch stochastic gradient descent is applied for the update of parameters. In this work, instead of obtaining a mini-batch randomly, each mini-batch in the iterations is selected in a submodular way such that the most informativ...
متن کاملGenerative Adversarial Mapping Networks
Generative Adversarial Networks (GANs) have shown impressive performance in generating photo-realistic images. They fit generative models by minimizing certain distance measure between the real image distribution and the generated data distribution. Several distance measures have been used, such as Jensen-Shannon divergence, f -divergence, and Wasserstein distance, and choosing an appropriate d...
متن کاملOn the Quantitative Analysis of Decoder-Based Generative Models
The past several years have seen remarkable progress in generative models which produce convincing samples of images and other modalities. A shared component of many powerful generative models is a decoder network, a parametric deep neural net that defines a generative distribution. Examples include variational autoencoders, generative adversarial networks, and generative moment matching networ...
متن کامل